Unlike V. anthelmintica and possibly V. colorata, V. amygdalina does not produce seeds and in Nigeria, it is propagated by cuttings. Work on V. anthelmintica seeds^{2a} revealed that 7,24(28)-stigmastadien-3 β -ol was present along with other compounds; while V. colorata³ showed the presence of a sesquiterpene ester-hydroxy vernolide.

Light petroleum (b.p. $60-80^{\circ}$) extraction of the pulverized dry stem of V. amygdalina⁴ gave a brown oil. This oil was chromatographed on silica gel (Merck: Kieselgel, $0\cdot2-0\cdot5$ mm, 30-70 mesh ASTM). Light petroleum and benzene fractions eluted oily materials that did not crystallize; 20% CHCl₃-benzene eluted a solid which was recrystallized from MeOH to give light green crystals (leaflets) m.p. $148-151^{\circ}$ (C₂₉H₄₈O MW (MS) of 412). IR showed it to be a steroidal alcohol. It gave an acetate (Ac₂O-HOAc using p-toluene sulphonic acid as catalyst), m.p. and m.m.p., with an authentic sample^{2a} of acetate of 7,24(28)-stigmastadien- 3β -ol, $150-152^{\circ}$. The compounds were identical by TLC.

EXPERIMENTAL

Extraction of stem. The dried powdered stem of V. amygdalina (1.5 kg), extracted with light petroleum, gave an oil (4.5 g).

Isolation of 7,24(28)-stigmastadien-3 β -ol. The oil (4.5 g) was dissolved in light petroleum and chromatographed on silica gel (135 g). The column was eluted progressively and 20% CHCl₃-benzene eluted solids which crystallized from MeOH or benzene. Repeated crystallization yielded 7,24(28)-stigmastadien-3 β -ol as light green crystals (leaflets) (97 mg) m.p. 148-151° (Calc. C, 84·40; H, 11·72. Found: C, 84·31; H, 11·67%) with M⁺ as 412, C₂₉H₄₈O has M⁺ as 412·67); ν_{max} 3300 cm⁻¹ (broad) in Nujol. (Acetate m.p. 150-152°.)

Acknowledgement—I thank Dr. J. P. Ward of Unilever Research Vlaardigen, Nederland, for a generous supply of an authentic specimen of 7, (Z)-24(28)-stigmastadienyl acetate.

⁴ Samples of *V. amygdalina* stem supplied by Mrs. V. N. Arene and Mrs. C. Ekundayo of College of Education, University of Lagos.

Phytochemistry, 1972, Vol. 11, p. 2887. Pergamon Press. Printed in England.

EUPHORBIACEAE

CONSTITUENTS OF EUPHORBIA TINCTORIA

Y. AYNEHCHI and N. KIUMEHR

Department of Pharmacognosy, School of Pharmacy, University of Tehran, Iran (Received 18 April 1972)

Key Word Index—Euphorbia tinctoria; Euphorbiaceae; nonacosane; octacosanol; γ -euphorbol.

Plant. Euphorbia tinctoria L. Source. Central parts of Iran plateau. Use. Plant is used as purgative. Previous work. None.

Roots, stem, leaves and flowers were extracted with light petroleum (40–60°). The residue was dissolved in petroleum and chromatographed on Kieselgel S. *Nonacosane*. C₂₉H₆₀ (Found, C, 84·90; H, 14·60. Reqd: C, 85·20; H, 14·80% m.p., m.m.p., IR and NMR). Earlier petroleum fractions and crystallization (MeOH-petroleum). *Unidentified ketone*. (m.p. 77°. IR 1720 cm⁻¹). From petroleum-benzene fractions (80–20) crystallized with MeOH. γ-Euphorbol. (m.p. 71–96°, IR 3400 cm⁻¹. Acetate, benzoate m.p., m.m.p. and IR 1740 cm⁻¹ and NMR). From benzene fractions. Crystallized from MeOH. *Octacosanol*. C₂₈H₅₈O (Found: C, 81·56; H, 14·08. Reqd: C, 81·67; H, 14·23%, IR 3418 cm⁻¹, m.p., m.m.p. Acetate, benzoate, m.p., m.m.p., IR 1740 cm⁻¹). From benzene–CHCl₃ (95–5) fractions: crystallized from MeOH-acetone (80–20).

Acknowledgement—The authors thank Professor A. Zargari and Dr. M. Mojtabaii for the kind interest during the course of this work.